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Quantum mechanics II, Solutions 4 : Density operators
TA : Achille Mauri, Behrang Tafreshi, Gabriel Pescia, Manuel Rudolph, Reyhaneh Aghaei Saem, Ricard Puig,

Sacha Lerch, Samy Conus, Tyson Jones

Problem 1 : No signalling

Use your new-found understanding of reduced states to justify the no signalling principle (i.e. to argue
why it is not possible to use entanglement to signal faster than light).

Solution

Intuitively

We can immediately intuit why signalling is impossible using our understanding of the reduced density
matrix, which we know it is a description of a partition totally independent of the other partition(s). No
matter what is performed upon the other partitions, the reduced density matrix is unchanged. Because the
statistics of local measurements are informed entirely by expected values of operators upon the reduced
density matrix, they are also independent of operations on other partitions. Ergo, signalling is impossible.

Two qubits

We can also prove this using density matrices, which we will find to be a much more pleasant process
than our previous proofs using only statevectors. For simplicity, let’s first consider Alice and Bob each
have a qubit in a general, two-qubit pure state. This includes all possible entangled state. Alice proposes
to perform an arbitrary measurement upon her qubit, collapsing it into either outcome state |λ1⟩ or |λ2⟩.
We can use these states as a basis to express the general, pre-measurement state as

|ψ⟩ = α |λ1⟩ |ϕ1⟩ + β |λ2⟩ |ϕ2⟩ , (1)

where α, β ∈ C and |ϕi⟩ is Bob’s corresponding state. The Born rule permits us to interpret |α|2 as the
probability of Alice measuring λ1, and |β|2 = 1 − |α|2 as the probability she measures λ2. Let’s notate
these as p1 = |α|2 and p2 = |β|2.

Before we consider actually performing any measurement, let us first compute the reduced density
matrix ρB of Bob’s qubit via the partial trace of this arbitrary state. We trace out Alice’s qubit, choosing
her outcome states |λi⟩ as the enumerated basis.

ρB = TrA

(
|ψ⟩ ⟨ψ|

)
=
∑

i

(
⟨λi| ⊗ 1̂

)
|ψ⟩ ⟨ψ|

(
|λi⟩ ⊗ 1̂

)
. (2)

We substitute in our general pure state

|ψ⟩ ⟨ψ| =
(
α |λ1⟩ |ϕ1⟩ + β |λ2⟩ |ϕ2⟩

)(
α∗ ⟨λ1| ⟨ϕ1| + β∗ ⟨λ2| ⟨ϕ2|

)
(3)

= |α|2 |λ1, ϕ1⟩ ⟨λ1, ϕ1| + αβ∗ |λ1, ϕ1⟩ ⟨λ2, ϕ2| + βα∗ |λ2, ϕ2⟩ ⟨λ1, ϕ1| + |β|2 |λ2, ϕ2⟩ ⟨λ2, ϕ2| (4)

although spare ourselves the nuisance of handling every projector by appreciating that ⟨λ1|λ2⟩ = 0, so
that the partial trace simplifies to

ρB = |α|2 |ϕ1⟩ ⟨ϕ1| + |β|2 |ϕ2⟩ ⟨ϕ2| (5)
= p1 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| . (6)

Let us now consider that Alice does perform her measurement. The shared state collapses to either

|ψ⟩ →

{
|λ1⟩ |ϕ1⟩ , with probability p1,

|λ2⟩ |ϕ2⟩ , with probability p2.
(7)
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The post-measurement system can be in one of multiple states as per the specified probabilities. We can
describe such a state, encoding the classical randomness (i.e. the outcome state) using a density matrix !
The post-measurement mixed state is simply written down as :

ρ′ = p1 (ρA=λ1) + p2 (ρA=λ2) (8)
= p1 |λ1, ϕ1⟩ ⟨λ1, ϕ1| + p2 |λ2, ϕ2⟩ ⟨λ2, ϕ2| . (9)

Let us now again trace out Alice’s qubit to obtain the reduced density matrix of Bob’s qubit.

ρ′
B = TrA(ρ) =

∑
i

(
⟨λi| ⊗ 1̂

)
ρ
(

|λi⟩ ⊗ 1̂
)

(10)

= p1 |ϕ1⟩ ⟨ϕ1| + p2 |ϕ2⟩ ⟨ϕ2| . (11)

Lo and behold, this is precisely the expression we found for Bob’s state when Alice did not perform a
prior measurement. We have ergo proven that Alice’s measurement has no affect on Bob’s state, nor the
statistics of his subsequent measurements. Alice cannot communicate to Bob via her measurement using
two shared qubits, entangled or otherwise.

Any number of any-level systems

If we want to be really rigorous, we should generalise our proof to permit Alice and Bob to each
have any dimension subspaces (e.g. many qutrits, or their own continuously parameterised systems !).
For illustration, let’s now do this using a different logic than used above, which will make use of some
properties of projectors and traces you have not yet seen ! We permit Alice and Bob to each have one
partition of any quantum state |ψ⟩. We’ll notate operators upon their respective partitions as Â⊗ 1̂ and
1̂ ⊗ B̂ respectively.

Let {Π̂i} be projectors corresponding to Alice’s possible outcomes when performing some measurement
on her partition. Given Alice is no longer measuring one qubit, there could be many more than two such
projectors. The possible outcome states can be expressed in terms of their projectors as :

|ψ⟩ →
{

|ψi⟩ = 1
√
pi

(
Π̂i ⊗ 1̂

)
|ψ⟩ : i

}
, (12)

where we have renormalised the post-projector states via the probabilities of their corresponding measu-
rement outcomes, pi = ⟨ψ|

(
Π̂i ⊗ 1̂

)
|ψ⟩. The output state after Alice’s measurement can be expressed as

a single mixed state :

ρ =
∑

i

pi |ψi⟩ ⟨ψi| =
∑

i

pi

(
1

√
pi

(
Π̂i ⊗ 1̂

))
|ψ⟩ ⟨ψ|

(
1

√
pi

(
Π̂i ⊗ 1̂

))†

=
∑

i

(
Π̂i ⊗ 1̂

)
|ψ⟩ ⟨ψ|

(
Π̂i ⊗ 1̂

)
,

(13)

where we leveraged that projectors are self-adjoint, i.e. Π̂i = Π̂†
i . The reduced density matrix of Bob’s

partition after Alice’s measurement is

ρB = TrA(ρ) = TrA

(∑
i

(
Π̂i ⊗ 1̂

)
|ψ⟩ ⟨ψ|

(
Π̂i ⊗ 1̂

))
. (14)

Happily, we will do need even need to evaluate this partial trace ! We can instead simplify it using some
of its properties, such as linearity :

ρB =
∑

i

TrA

((
Π̂i ⊗ 1̂

)
|ψ⟩ ⟨ψ|

(
Π̂i ⊗ 1̂

))
(15)

We will next shuffle around some operators. Beware that unlike the trace which is cyclic, i.e. Tr
(
L̂1L̂2L̂3

)
=

Tr
(
L̂3L̂1L̂2

)
= Tr

(
L̂2L̂3L̂1

)
, the patrial trace is only cyclic with respect to operators of the traced
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subspace. This is easy to demonstrate :

Trleft

(
(L̂1 ⊗ R̂1) (L̂2 ⊗ R̂2) (L̂3 ⊗ R̂3)

)
= Trleft

(
(L̂1L̂2L̂3) ⊗ (R̂1R̂2R̂3)

)
(16)

= Tr
(
L̂1L̂2L̂3

)
(R̂1R̂2R̂3) = Tr

(
L̂3L̂1L̂2

)
(R̂1R̂2R̂3) = Tr

(
L̂2L̂3L̂1

)
(R̂1R̂2R̂3) (17)

= Trleft

(
(L̂3 ⊗ R̂1) (L̂1 ⊗ R̂2) (L̂2 ⊗ R̂3)

)
= Trleft

(
(L̂2 ⊗ R̂1) (L̂3 ⊗ R̂2) (L̂1 ⊗ R̂3)

)
(18)

and holds true even when some operators are not separable (like |ψ⟩ ⟨ψ| in our case), which we could show
by expressing them as a weighted sum in a separable basis and expanding via linearity. By cyclity, Bob’s
state becomes

ρB =
∑

i

TrA

((
(Π̂iΠ̂i) ⊗ 1̂

)
|ψ⟩ ⟨ψ|

(
1̂ ⊗ 1̂

))
(19)

=
∑

i

TrA

((
Π̂i ⊗ 1̂

)
|ψ⟩ ⟨ψ|

)
, (20)

via idempotency of Π̂i (i.e. Π̂iΠ̂i = Π̂i). Let’s now move the sum around the only terms affected by it,
utilising linearity of both the partial trace and the tensor product, to express

ρB = TrA

(((∑
i

Π̂i

)
⊗ 1̂

)
|ψ⟩ ⟨ψ|

)
. (21)

Finally, we recognise that the sum of projectors of all orthonormal outcome states is the identity operator ;∑
i

Π̂i = 1 (22)

To appreciate this, think about applying it to any particular state, when expressing that state in this
perfectly valid basis. Our algebra above has concluded that the reduced density matrix describing Bob’s
qubit after Alice’s measurement is :

ρB = TrA (|ψ⟩ ⟨ψ|) . (23)

We immediately recognise this is identical to Bob’s reduced density matrix when Alice does not perform
any prior measurement. Alice cannot signal to Bob via her measurement basis no matter what quantum
state they share !

Problem 2 : Density operator, partial trace, information and measure

Alice and Bob share state
|ψ⟩ = |01⟩ − |10⟩√

2
(24)

1. What is the density matrix of the system ρ̂ with 2 qubits ?
2. Verify that it is a pure state by calculating Tr(ρ̂2).

Note ρ̂B = TrA ρ̂ the density matrix obtained by partial trace on Alice’s qubit. This matrix is an operator
on the Hilbert space of the second qubit (Bob’s), and reflects the information available to Bob.

3. Calculate ρ̂B and link that result to the probability Bob has to get outcome 0 or 1 when he measures
his qubit in the computational basis (We will write Ô the corresponding observable). Also verify
that we have ⟨Ô⟩ = Tr[ρ̂(1 ⊗ Ô)] = Tr(ρ̂BÔ).

4. Does the matrix ρB describe a pure state of the second qubit ? Justify by calculating Tr(ρ̂2
B). What

about if the 2 qubit state |ψ⟩ being separable in the form |ψA⟩ ⊗ |ψB⟩ ? We sometimes say that
statistical mixtures of the state of a system is the fruit of entanglement of this system with its
environment ; how can we interpret this in the light of the previous results ?
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We admit that when the measurement of an observable M̂ on the system gives the result m, then the
density matrix (ρ̂ before measurement) reads

ρ̂′ = P̂mρ̂P̂
†
m

Tr(P̂ †
mP̂mρ̂)

, (25)

where P̂m is the projector on the subspace relative to m.
5. What is the state with 2 qubits |ψ′⟩ obtained when Alice measure her qubit in the computational

basis and finds 0 ? Compare |ψ′⟩ ⟨ψ′| and ρ̂′.
6. When Alice measures her qubit on state |ψ⟩ and finds 0, what is the density matrix ? ρ̂′

B ? Comment.

Solution
1. The density matrix of the system is

ρ = |ψ⟩ ⟨ψ| = 1
2 |01⟩ ⟨01| − 1

2 |01⟩ ⟨10| − 1
2 |10⟩ ⟨01| + 1

2 |10⟩ ⟨10| , (26)

and its matrix form in the computational basis reads

ρ =


0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 0

 . (27)

2. We have ρ̂2 = |ψ⟩ ⟨ψ|ψ⟩ ⟨ψ| = |ψ⟩ ⟨ψ| = ρ̂, which we could also verify by squaring (26) and (27).
This implies Tr(ρ̂2) = 1 and characterises a pure state (which we knew by construction).

3. The reduced density matrix describing Bob’s qubit is given by the partial trace, tracing over Alice’s
basis states.

ρB = TrA(ρ) =
∑

|ϕ⟩∈{|0⟩,|1⟩}

(
⟨ϕ| ⊗ 1̂

)
ρ
(
|ϕ⟩ ⊗ 1̂

)
(28)

You can expand and evaluate this in the usual approach, although it is perhaps clearer to explicitly
invoke that the matrix element (ρB)ij of the reduced state ρB is given by

⟨i|ρB |j⟩ =
∑

x

⟨x| ⟨i| ρ |x⟩ |j⟩ . (29)

We can compute each of the 4 matrix elements separately. Using Eq. (26), the first element is

⟨0|ρB |0⟩ =
∑

x

⟨x0|ρ|x0⟩ = ⟨00|ρ|00⟩ + ⟨10|ρ|10⟩ = 0 + 1
2 = 1

2 . (30)

One can proceed similarly to get the other 3 matrix elements. The reduced density matrix of Bob
in matrix form is then

ρB =
( 1

2 0
0 1

2

)
, (31)

which corresponds to a statistical mixture of |0⟩ and |1⟩, with equal probability 1/2.
If O ≡ |1⟩⟨1| , we now want to show that ⟨O⟩ = Tr[ρ(1 ⊗ O)] = Tr(ρBO). In matrix form, the
observable O is given by

O =
(

0 0
0 1

)
. (32)

Using matrix notation we find the result of interest

Tr[ρ(1 ⊗O)] = Tr




0 0 0 0
0 1

2 − 1
2 0

0 − 1
2

1
2 0

0 0 0 0




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 = Tr


0 0 0 0
0 1

2 0 0
0 − 1

2 0 0
0 0 0 0

 = 1
2 , (33)

Tr(ρBO) = Tr
[( 1

2 0
0 1

2

)(
0 0
0 1

)]
= Tr

(
0 0
0 1

2

)
= 1

2 . (34)
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4. The density matrix ρB describes a mixed state since Tr(ρ2
B) = Tr(1/4) = 1/2 < 1. If |ψ⟩ is separable

in the form |ψ⟩ = |ψA⟩ ⊗ |ψB⟩, then the density matrix becomes

ρ = |ψAψB⟩ ⟨ψAψB | = ρ1 ⊗ ρ2, (35)

with

ρ1 = |ψA⟩ ⟨ψA| , (36)
ρ2 = |ψB⟩ ⟨ψB | , (37)

and the density matrix of the second qubit, that is

ρ̂B = TrA(ρ̂1 ⊗ ρ̂2) = (Trρ̂1)ρ̂2 = ρ̂2 = |ψB⟩ ⟨ψB | , (38)

is indeed a pure state. We have thus illustrated by an example, the fact that if the total system is a
pure state, a subsystem appears mixed iff it is entangled with the rest of the system.

5. If Alice measures her qubit and finds 0, it means the 2 qubits state obtained is |ψ′⟩ = |01⟩, in which
case

|ψ′⟩⟨ψ′| = |01⟩⟨01|. (39)
Now to compute ρ′, we need the projector on the subspace 0, that is,

P0 = |0⟩⟨0| ⊗ 1 = P †
0 . (40)

The computation is then straightforward

P0ρ = 1
2 |01⟩ ⟨01| − 1

2 |01⟩ ⟨10| , (41)

P̂0ρP
†
0 = 1

2 |01⟩ ⟨01| , (42)

Tr(P †
0P0ρ) = Tr(P0ρP

†
0 ) = 1

2 , (43)

and the new density operator is

ρ′ = P0ρP
†
0

Tr(P †
0P0ρ)

= |01⟩ ⟨01| = |ψ′⟩ ⟨ψ′| , (44)

6. Again, if Alice measures her qubit and finds 0, it means the 2 qubits state obtained is |ψ′⟩ = |01⟩ =
|0⟩A ⊗ |1⟩B . That is, it is separable (or, equivalently, it is a “product state”). As a result, according
to the discussion above about the density matrix of separable states, we can directly write down
Bob’s reduced density matrix as ρ′

B = |1⟩⟨1|.

Problem 3 : Decoherence.

Consider a composite system that is prepared in the initial state |ψ⟩ =
∑

j cj |Ej⟩A ⊗ |ϕ⟩B and evolves
under a Hamiltonian HAB =

∑
j |Ej⟩⟨Ej |A ⊗H

(j)
B for time t.

a) Find an expression for the reduced states ρA(t) and ρB(t) of systems A and B as a function of time.
The evolution of the full system is given by the time-independent unitary evolution operator :

|ψ(t)⟩ = e−itĤAB |ψ(0)⟩ = e
−it
∑

j

|Ej⟩⟨Ej |A⊗Ĥ
(j)
B ∑

k

ck |Ek⟩A ⊗ |ϕ⟩B . (45)

We could immediately recognise the spectral theorem, as described here, but let’s instead Taylor expand
the exponential, invoking

Û(t) = e
−it
∑

j

|Ej⟩⟨Ej |A⊗Ĥ
(j)
B

=
∞∑

n=0

1
n!

−it
∑

j

|Ej⟩ ⟨Ej |A ⊗ Ĥ
(j)
B

n

(46)

=
∞∑

n=0

tn(−i)n

n!
∑

j

|Ej⟩ ⟨Ej |A ⊗
(
Ĥ

(j)
B

)n

. (47)
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The final step above leveraged the orthogonality of {|Ej⟩ ⟨Ej |}, i.e. that ⟨Ej |Ej′⟩ = δj,j′ . To appreciate
this, consider n = 2 where∑

j

|Ej⟩ ⟨Ej |A ⊗ Ĥ
(j)
B

2

=

∑
j

|Ej⟩ ⟨Ej |A ⊗ Ĥ
(j)
B

∑
j′

|Ej′⟩ ⟨Ej′ |A ⊗ Ĥ
(j′)
B

 (48)

=
∑

j

∑
j′

(
|Ej⟩ ⟨Ej |A ⊗ Ĥ

(j)
B

)(
|Ej′⟩ ⟨Ej′ |A ⊗ Ĥ

(j′)
B

)
(49)

=
∑

j

∑
j′

|Ej⟩ ⟨Ej |Ej′⟩ ⟨Ej′ |A ⊗ Ĥ
(j)
B Ĥ

(j′)
B (50)

=
∑

j

|Ej⟩ ⟨Ej |A ⊗ (Ĥ(j)
B )2, (51)

which is straightforward to generalise for higher n. We continue from Eq. 47, moving the projectors outside
of the Taylor expansion, which we then restore to an exponential :

Û(t) =
∑

j

|Ej⟩ ⟨Ej |A ⊗
∞∑

n=0

tn(−i)n

n!

(
Ĥ

(j)
B

)n

=
∑

j

|Ej⟩ ⟨Ej |A ⊗ e−itĤ
(j)
B (52)

Having simplified the unitary time evolution operator, we apply it upon the initial state of the full system
to find the full state at time t.

|ψ(t)⟩ = Û(t) |ψ(0)⟩ =

∑
j

|Ej⟩ ⟨Ej |A ⊗ e−itĤ
(j)
B

∑
k

ck |Ek⟩A ⊗ |ϕ⟩B (53)

=
∑

j

cj |Ej⟩A ⊗ e−itĤ
(j)
B |ϕ⟩B , (54)

again using orthogonality of {Ej}. Expressed as a density matrix, this is

|ψ(t)⟩ ⟨ψ(t)| =

∑
j

cj |Ej⟩A ⊗ e−itĤ
(j)
B |ϕ⟩B

∑
j′

c∗
j′ ⟨Ej′ |A ⊗ ⟨ϕ|B e

itĤ
(j′)†
B

 (55)

=
∑

j

∑
j′

cjc
∗
j′ |Ej⟩ ⟨Ej′ |A ⊗ e−itĤ

(j)
B |ϕ⟩ ⟨ϕ|B e

itĤ
(j′)
B (56)

There, we used that each {Ĥ(j)
B } are Hermitian, since the Hamiltonian ĤAB is Hermitian, as are the

projectors {|Ej⟩ ⟨Ej |}. Since these projectors are orthogonal, ĤAB = Ĥ†
AB =⇒ Ĥ

(j)
B = Ĥ

(j)†
B ∀ j.

The reduced density matrices of each partition is then found via the partial trace. Because we have
expressed the state as (a sum of) terms separable between the partitions, it is trivial to evaluate the partial
trace as

ρB(t) = TrA

(
|ψ(t)⟩ ⟨ψ(t)|

)
=
∑

j

∑
j′

cjc
∗
j′ TrA

(
|Ej⟩ ⟨Ej′ |A ⊗ e−itĤ

(j)
B |ϕ⟩ ⟨ϕ|B e

itĤ
(j′)†
B

)
(57)

=
∑

j

∑
j′

cjc
∗
j′ Tr

(
|Ej⟩ ⟨Ej′ |A

)
e−itĤ

(j)
B |ϕ⟩ ⟨ϕ|B e

itĤ
(j′)
B (58)

and finally, since Tr
(

|Ej⟩ ⟨Ej′ |A
)

= δj,j′ (which we can intuit through thinking of the matrix form of
|Ej⟩ ⟨Ej′ |), we conclude

ρB(t) =
∑

j

|cj |2e−itĤ
(j)
B |ϕ⟩ ⟨ϕ|B e

itĤ
(j)
B . (59)
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We observe this is a mixture (with probabilities |cj |2) of the pure states resulting from unitary-time
evolution under a random choice of Hamiltonian Ĥ

(j)
B upon state |ϕ⟩B . Meanwhile,

ρA(t) = TrB

(
|ψ(t)⟩ ⟨ψ(t)|

)
=
∑

j

∑
j′

cjc
∗
j′ |Ej⟩ ⟨Ej′ |A Tr

(
e−itĤ

(j)
B |ϕ⟩ ⟨ϕ|B e

itĤ
(j′)
B

)
(60)

=
∑

j

∑
j′

cjc
∗
j′ |Ej⟩ ⟨Ej′ |A ⟨ϕ| eitĤ

(j′)
B e−itĤ

(j)
B |ϕ⟩ . (61)

The final step used the cyclic property of the trace, and that the trace of a scalar is the scalar :

Tr
(
Ĉ |ϕ⟩ ⟨ϕ| D̂

)
= Tr

(
|ϕ⟩ ⟨ϕ| D̂Ĉ

)
= Tr

(
⟨ϕ| D̂Ĉ |ϕ⟩

)
= ⟨ϕ| D̂Ĉ |ϕ⟩

Beware that because eitĤ
(j′)
B and e−itĤ

(j)
B do not necessarily commute, we cannot express them as a single

exponential.
b) Under what circumstances do A and B remain pure for all times ?
Given the full system begins and remains in a pure state, the reduced density matrices of each par-

tition remain pure whenever the full state remains separable. That is, only when the partitions become
entangled does each partition’s state becomes mixed. There are several methods to find constraints on the
Hamiltonian which admit this circumstance, such as explicitly asserting Tr

(
ρ2

A

)
= Tr

(
ρ2

B

)
= 1, observing

when ρA or ρB have the form of a pure state |Ψ⟩ ⟨Ψ|, or observing when the full system Hamiltonian ĤAB

upon the given initial state |ψ⟩ never induces entanglement.
All three methods constrain that Ĥ(j)

B are fixed across j, such that

ĤAB =

∑
j

|Ej⟩ ⟨Ej |

⊗ ĤB . (62)

Erratum
A previous solution erroneously asserted that entanglement is never generated when the full system

Hamiltonian is seperable, i.e. when ĤAB = ĤA ⊗ ĤB , regardless of the state which is time-evolved. This
is not true in general ; the evolution under even separable Hamiltonians can generate entanglement. For
example, consider when ĤA = ĤB = X̂, whereby the full evolution of the zero state

e−itĤAB |00⟩ = e−itX̂A⊗X̂B |00⟩ = cos(t) |00⟩ − i sin(t) |11⟩ ,

produces entangled states for all t = nπ/2, for any integer n ∈ N. In this problem, it is not necessary
for the Hamiltonian ĤAB to be incapable of generating entanglement when evolving any initial state ; we
care only about the evolution of the given state |ψ⟩.

For a two-partite Hamiltonian to never generate entanglement, it must be expressible in the form

ĤAB = ĤA ⊗ 1̂ + 1̂ ⊗ ĤB ,

where commutation of the terms simplifies the unitary-time evolution operator to

e−i tĤAB = e−i tĤA⊗1̂ e−i t 1̂⊗ĤB

=
(
e−i tĤA ⊗ 1̂

)(
1̂ ⊗ e−i tĤB

)
(evident by Taylor expansion)

= e−i tĤA ⊗ e−i tĤB ,

which as a separable unitary, generates no entanglement.
c) Under what circumstances does ρA(t) become approximately diagonal in the basis {|Ej⟩} ?
We found

ρA(t) =
∑

i

∑
j

(
cic

∗
j ⟨ϕ| eitĤ

(j)
B e−itĤ

(i)
B |ϕ⟩

)
|Ei⟩ ⟨Ej |A , (63)
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where the coefficient of |Ei⟩ ⟨Ej |A is the (i, j)-th element of the density matrix in the basis of {|Ej⟩}. This
is approximately diagonal whenever the off-diagonals (where i ̸= j) are approximately zero. Ergo

cic
∗
j ⟨ϕ| eitĤ

(j)
B e−itĤ

(i)
B |ϕ⟩ ≈ 0 ∀ i ̸= j. (64)

Rejecting ci ≈ 0 ∀ i which invalidates our initial state, we recognise this as the constraint that state
e−itĤ

(i)
B |ϕ⟩ is approximately orthogonal to state e−itĤ

(j)
B |ϕ⟩. This means that the evolution to time t

under each local Hamiltonian on partition B drives the partition to almost orthogonal states. We can
interpret this as the B partition acting like a measuring device upon the A partition, driving it into a
pointer state |Ej⟩.

Problem 4 : Decoherence and dephasing of a single qubit

1. Consider applying a random Rz rotation, i.e. e−iϑ/2σz for ϑ/2 ∈ [−π, π] to a generic initial pure
qubit state |ψ⟩ = sin(θ)|0⟩ + cos(θ)e−iϕ|1⟩. What is the resulting mixed state on average ? Sketch
this on the Bloch sphere.
Disclaimer : What does “average mixed state” even mean ? In this case, it means that we take
the average over all states with respect to this σz rotation. How do we take the average ? We just
compute

ρav = 1
2π

∫ π

−π

Rz(ϑ) |ψ⟩ ⟨ψ|R†
z(ϑ)dϑ (65)

The initial density matrix is

ρ0 = |ψ⟩⟨ψ| =
(

sin2(θ) eiϕ sin(θ) cos(θ)
e−iϕ sin(θ) cos(θ) cos2(θ)

)
(66)

Now we can apply a random rotation Rz on the generic initial state. To do so, we expand Rz(ϑ) =
cos ϑ

2 1 − i sin ϑ
2Z. We now average over ϑ ∈ [−π, π] by taking the integral.

⟨ρz(ϑ)⟩ϑ = ⟨cos2 ϑ

2 ⟩ϑρ0 + i⟨cos ϑ2 sin ϑ2 ⟩ϑ(Zρ0 − ρ0Z) + ⟨sin2 ϑ

2 ⟩ϑZρ0Z (67)

= 1
2(ρ0 + Zρ0Z) =

(
sin2 θ 0

0 cos2 θ

)
(68)

And if we want to see the effect of this rotation on the Block sphere, it just rotates the state around
the z axis by an angle ϑ. If we compute the average it would be a vector with an angle ϕ = 0.

2. Consider now applying a random Rz rotation and then a random Rx rotation. What is the resulting
mixed state on average ? And what if you now apply all three (a random Rz, Rx and Ry) ? Sketch
this on the Bloch sphere.
In the previous point, we observed that only the terms where the Pauli matrices act symmetrically
on both sides of the density matrix survive the averaging, as ⟨sin ϑ

2 cos ϑ
2 ⟩ = 0. Using this, and the

fact that the angles for the two rotations are independently sampled, i.e. ⟨·⟩ϑ,γ = ⟨·⟩ϑ⟨·⟩γ , we find

⟨ρx,z(γ, ϑ)⟩ϑ = ⟨cos2 ϑ

2 ⟩ϑ⟨cos2 γ

2 ⟩γρ0 + ⟨cos2 ϑ

2 ⟩ϑ⟨sin2 γ

2 ⟩γXρ0X (69)

+ ⟨sin2 ϑ

2 ⟩ϑ⟨cos2 γ

2 ⟩γZρ0Z + ⟨sin2 ϑ

2 ⟩ϑ⟨sin2 γ

2 ⟩γXZρ0ZX (70)

= 1
4(ρ0 +Xρ0X + Zρ0Z +XZρ0ZX) = 1

4(ρ0 +Xρ0X + Zρ0Z + Y ρ0Y ) (71)

=
( 1

2 0
0 1

2

)
. (72)

We already obtain the maximally mixed state after averaging overX and Z rotations, a third rotation
about the Y axis can hence not mix the state further. For completeness, we can still compute
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ρzxy(ϑ, γ, β) = Ry(β)ρzxR
†
y(β) (73)

=
(

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)
ρzx

(
cos(β/2) sin(β/2)

− sin(β/2) cos(β/2)

)
(74)

Now we can compute the average of the density matrix.

⟨ρzxy(ϑ, γ, β)⟩ϑ,γ,β =
( 1

2 0
0 1

2

)
(75)

3. What if instead you apply a random Rz rotation with probability p and do nothing with probability
1 − p ? And what if you apply a random Rz rotation then a random Rx rotation with probability p,
and do nothing with probability 1 − p ? Sketch this on the Bloch sphere.
If we apply a random Rz rotation with probability p and do nothing with probability 1 − p, we can
write the final density matrix as follows.

ρz,I = pRz(ϑ)ρR†
z(ϑ) + (1 − p)ρ (76)

And if we apply this on a general initial density matrix, we will have,

ρz,I = p

(
sin2(θ) ei(ϕ−ϑ) sin(θ) cos(θ)

e−i(ϕ−ϑ) sin(θ) cos(θ) cos2(θ)

)
+ (1 − p)

(
sin2(θ) eiϕ sin(θ) cos(θ)

e−iϕ sin(θ) cos(θ) cos2(θ)

)
(77)

And then if we compute the average over ϑ we will have,

ρz,I =
(

sin2(θ) (1 − p)eiϕ sin(θ) cos(θ)
(1 − p)e−iϕ sin(θ) cos(θ) cos2(θ)

)
(78)

If we apply a random Rz rotation and then apply a random Rx with probability p and do nothing
with probability 1 − p, we can write the final density matrix as follows.

ρzx,I = pRx(ϑ)ρzR
†
x(ϑ) + (1 − p)ρ (79)

And if we apply this on the ρz and then if we compute the average over ϑ we will have,

ρzx,I =
(

(1 − p) sin2(θ) + p
2 (1 − p)eiϕ sin(θ) cos(θ)

(1 − p)e−iϕ sin(θ) cos(θ) (1 − p) cos2(θ) + p
2

)
(80)

4. Suppose you now instead throw away your initial state and prepare the maximally mixed state I/2
with probability p and do nothing with probability 1 − p ? Sketch this on the Bloch sphere.

ρI = p
I
2 + (1 − p)ρ (81)

ρI =
(

(1 − p) sin2(θ) + p
2 (1 − p)eiϕ sin(θ) cos(θ)

(1 − p)e−iϕ sin(θ) cos(θ) (1 − p) cos2(θ) + p
2

)
(82)

5. What do you conclude from all this ?
When we apply just one random rotation Rz with probability p and do nothing with probability
1 − p, it will be a dephasing quantum channel. When we apply random rotations Rx and Rz with
probability p and do nothing with probability 1 − p it will be a depolarizing quantum channel. And
when we throw away the initial state with probability p and do nothing with probability 1 − p it
will be the depolarizing channel.
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